
- CS (thiocarbonyl) → better σ-donor and better π-acceptor than CO.
- N₂ → a poor ligand (much worse σ-donor and π-acceptor) – typically reduced in its complexes
- CN⁻ → good σ-donor, OK π-acceptor more similar to a halide than CO.
- CNR (isocyanide or isonitrile) → similar to CO but can tune the steric and electronic properties. More reactive for insertion chemistry.

NO and NNR → redox active ligands (linear NO⁺ or bent NO⁻) can change the total electron count of a complex (what would you expect for [Cr(NO)₄] ?).

СО	 Carbonyl: σ-donor, strong π-acceptor. Terminal (1850-2100 cm⁻¹), μ₂-bridging (1700-1850 cm⁻¹) or μ₃-bridging (1600-1700 cm⁻¹). For free CO, ν(CO) = 2143 cm⁻¹.
CS	 Thiocarbonyl: better σ-donor and better π-acceptor than CO. Terminal (1160-1410 cm⁻¹), μ₂-bridging (1100-1160 cm⁻¹) or μ₃-bridging (1040-1080 cm⁻¹). For free CS (not stable at room temperature), v(CS) = 1273 cm⁻¹. Synthesis of thiocarbonyl complexes from ML_x + CS₂/PR₃ or ML_x²⁻ + Cl₂C=S.
NO	 Nitrosyl: redox active → linear N≡O⁺ (1600-1850 cm⁻¹) or bent N=O⁻ (1500-1700 cm⁻¹) NO⁺ is isoelectronic with CO: worse σ-donor, better π-acceptor. Nitrosyls can be terminal or bridging. ● Synthesis from NO gas, NO⁺ PF₆⁻ or ClNO. A related pair of redox active ligands are R-N≡N⁺ (diazonium) and R-N=N⁻ (diazenide)
N ₂	 Dinitrogen: isoelectronic with CO ● Worse σ-donor and much worse π-acceptor than CO. A poor ligand, and very unreactive due to extremely strong N≡N triple bond. N-N bond dissociation energies: N≡N (946 kJmol⁻¹), HN=NH (414 kJmol⁻¹), H₂N-NH₂ (159 kJmol⁻¹). v(N₂) for free N₂ = 2331 cm⁻¹ (Raman). v(N₂) for L_xM(N₂) = 700-2200 cm⁻¹. In complexes - N₂ often reduced to N₂²⁻ or N₂⁴⁻ - use low valent early TM, lanthanide or actinide complexes {<i>e.g.</i> '(R₂N)₃Nb^{III}', R₂Ti^{IV}Cl₂+Na/Hg, Cp*₂Sm^{II} or (R₂N)₃U^{III}(THF)}. Huge interest in converting N₂ to useful N-containing compounds <i>e.g.</i> NH₃. Plants do this at RT and 1 atm pressure. Haber-Bosch process (120 million Tonnes <i>p.a.</i>) Ru/C cat., 400 °C, 200 atm.

CN-	 Cyanide: isoelectronic with CO, but in some ways more like a halide than CO. Good σ-donor, only a moderate π-acceptor. ● ν(CN) for L_xM(CN) useful. Better at stabilizing metals in high oxidation states than those in low oxidation states.
CNR	 Isonitrile or Isocyanide (Stench !): isoelectronic with CO but much larger dipole moment. M-C≡N-R almost always linear. ● Generally a stronger σ-donor and a weaker π-acceptor than CO (depends on R), but more able to adjust to suit the metal than CO. Unlike CO, metal coordination can either raise or lower v(CN) (2000-2200 cm⁻¹) → because the HOMO of CNR is much more antibonding than that of CO.
PR ₃	 Phosphines – σ-donors and π-acceptors. No useful IR handle, but ³¹P-NMR is almost as easy to run as ¹H NMR. Huge variety of phosphines available - Can just pick one with the desired steric and electronic properties. C. A. Tolman, <i>Chem. Rev.</i>, 1977, 313. Related ligands: P(OR)₃ = phosphites (worse σ-donors, better π-acceptors), AsR₃ = arsine (slightly worse ligands, lone pair not as available for bonding as in PR₃) Other related ligands: Arduengo carbenes = stable :C(NR₂)₂ (see later)